Name:

QUIZ - MATH GRADE 10

1. $(15 \%, 5 \%$ for each perfect row) Use the circles below to show work.

Angle in degrees	Angle in Radians	$\operatorname{Sin}(\mathbf{x})$	$\operatorname{Cos}(\mathbf{x})$	$\operatorname{Tan}(\mathbf{x})$	$\boldsymbol{\operatorname { C o t } (\mathrm { x })}$	$\operatorname{Sec}(\mathbf{x})$	$\operatorname{Csc}(\mathbf{x})$
270°							
315°							
		Negative	0.5				

2. (12\%) Find (5\%) and Sketch (1\%) on the unit circle:
a. $(6 \%) \operatorname{Tan}\left(\frac{2 \pi}{3}\right)=$
b. $(6 \%) \operatorname{Sin}\left(\frac{7 \pi}{4}\right)=$

2. (15\%) In each one of the cases Find (4\%) and sketch (1\%) on the unit circle:
a. $(5 \%) \operatorname{Cos}\left(130^{\circ}\right)=\operatorname{Cos}($ \qquad)

Angle found should be within [$0,360^{\circ}$]
b. $(5 \%) \operatorname{Sin}\left(265^{\circ}\right)=\operatorname{Sin}($ \qquad)

Angle found should be within $\left[0,360^{\circ}\right]$

c. $(5 \%) \operatorname{Tan}\left(25^{\circ}\right)=\operatorname{Tan}($ \qquad)

Angle found should be within [$0,360^{\circ}$]
3. (18%) Given that $\sin (x)=-\frac{3}{8}$

a. (4\%) The angle x can be in the \qquad or \qquad Quadrants.
b. $(8 \%) \operatorname{Cos}(x)=$
c. $(6 \%) \operatorname{Sin}(2 x)=$
4. (15\%) Given that $\tan (x)=-9,0<x<\pi$
a. $(5 \%) x$ is in the \qquad Quadrant.
b. $(10 \%) \operatorname{Cos}(\mathrm{x})=$
5. (4\%) The $\sin (x)$ function relates 2 variables. Write them down:

6. (11%) The Beam produced by a certain antenna forms a sector of a circle with an angle of 0.5 radians. It can emit to a distance of 10 km .
a. (4\%) Find the Area of emission of the antenna.
b. (7\%) A second antenna has the same area of emission but can emit to a distance twice as large. Find its angle of emission.
7. (10%) Given that, answer in terms of a and b, show work on the circle
a. $\operatorname{Tan}\left(180^{\circ}-\theta\right)=$
b. $\operatorname{Cos}(90+\theta)=$

BONUS (10\%)

Find the perimeter of an isosceles triangle whose base is half of its side and its area is 20 cm^{2}

