QUIZ - MATH GRADE 10

1. (15%, 5% for each **perfect** row) Use the circles below to show work.

Angle in degrees	Angle in Radians	Sin(x)	Cos(x)	Tan(x)	Cot(x)	Sec(x)	Csc(x)
270°							
315°							
		Negative	0.5				

2. (12%) Find (5%) and Sketch (1%) on the unit circle:

a.
$$(6\%) \operatorname{Tan}(\frac{2\pi}{3}) =$$

b.
$$(6\%) \sin(\frac{7\pi}{4}) =$$

2. (15%) In each one of the cases Find (4%) and sketch (1%) on the unit circle:

Angle found should be within [0, 360°]

Angle found should be within [0, 360°]

c.
$$(5\%) \operatorname{Tan}(25^{\circ}) = \operatorname{Tan}(\underline{\hspace{1cm}})$$

Angle found should be within [0, 360°]

a. (4%) The angle x can be in the _____or ___ Quadrants.

b.
$$(8\%) \cos(x) =$$

c.
$$(6\%) \sin(2x) =$$

4. (15%) Given	that t	tan(x)	= -9,	0 <	x <	π

b.
$$(10\%) \cos(x) =$$

5. (4%) The sin(x) function relates 2 variables. Write them down:

- 6. (11%) The Beam produced by a certain antenna forms a sector of a circle with an angle of 0.5 radians. It can emit to a distance of 10 km.
 - a. (4%) Find the Area of emission of the antenna.

b. (7%) A second antenna has the same area of emission but can emit to a distance twice as large. Find its angle of emission.

- 7. (10%) Given that, answer in terms of a and b, show work on the circle
 - a. $Tan (180^{\circ} \theta) =$
 - b. $\cos(90 + \theta) =$

(a,b)

BONUS (10%)

Find the perimeter of an isosceles triangle whose base is half of its side and its area is $20\,\mathrm{cm}^2$