Name:

## QUIZ 22 - MATH IB HL

1. $(38 \%)$ Given that: $\mathrm{f}(\mathrm{x})=\ln (x-1)+x, \mathrm{~g}(\mathrm{x})=e^{-2 x}+1, \mathrm{~s}(\mathrm{x})=\frac{x+1}{3-2 x}$, find:
a. (4\%) Find, simplified.
d. $(4 \%) g \circ f(e+1)$
$f(g(x))=$
b. $(4 \%) \mathrm{s}(\mathrm{g}(0))=$
c. $(4 \%) \mathrm{s}^{-1}(-2)=$
f. $(4 \%) \mathrm{g}\left(\_\quad\right)=e+1$
e. $(4 \%) \mathrm{s}^{-1}(\mathrm{~s}(\mathrm{x}))=$
 intercepts and asymptotes. Illustrate the asymptotes on the graph.
h. $(4 \%) f(x)$ is $\qquad$ of $f^{-1}(x)$
2. (10\%) Given that $f(x)=5-2^{3-2 x}$, find the inverse function $f^{-1}(x)$.
3. (15\%) Consider the functions $f: x \mapsto 10(x-1)$ and $g: x \mapsto \frac{x+1}{3-2 x}$.
(a) $\quad(8 \%)$ Find $g^{-1}$.
(b) (7\%) Solve the equation $\left(f \circ g^{-1}\right)(x)=4$.
4. (10\%) Given the function: $\mathrm{H}(\mathrm{x})=\sin (10 \mathrm{x})$ and
a. $(4 \%) H\left(\frac{\pi}{6}\right)=$
b. $(6 \%) H(x)$ can be written in the form $2 \sin (k x) \cos (k x)$, find $k$.
5. (14\%) The function $f$ is given by $f(x)=2 x^{2}+12 x+23$, for $x \geq-3$.
(a) $(5 \%)$ Write $f(x)$ in the form $\mathrm{k}(x+a)^{2}+b$.
(b) $(5 \%)$ Find the inverse function $f^{-1}$.
(c) (4\%) State the domain of $f^{-1}$.
6. (13\%) Consider the function $f$, where $f(x)=(\ln (\sin (x))$ and $0 \leq \mathrm{x}<6$
(a) $(7 \%)$ Find the exact domain of $f$.
(b) (6\%) Find $f^{-1}(x)$.
