Name:

QUIZ 19 - MATH IB HL

1. (47%) Given the function $f(x) = -\log_2(4 - \frac{x}{3}) - 1$

a. (8%) Find the domain of the function:

b. (8%) Write all the corresponding limit(s) (if any) and conclusion:

Since _____

c. (5%) Find the y intercept:

d. (8%) Find the x intercept:

e. (5%) Sketch the function (including asymptotes and intercepts)

f. (2%) State the range of the function:_____

g. (3%) State the interval in which the function

increases:

h. (4%) Sketch the function: $g(x) = \left(Log_2(4 - \frac{x}{3}) - 1\right)\left(\frac{x + 12}{x + 12}\right)$

i. (4%) $Lim_{x \to -12^{-}}(g(x)) =$

2. (28%) The Weber – Fechner Law in psychophysics for the response of the human eye to stimulus follows the flowing model:

$$P(S) = A \log_{9} \left(\frac{S}{S_{0}} \right)$$

https://en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law

Where **S** is the stimulus Intensity, **A**, S_0 are constants and **P** is the <u>human perception</u> of the stimulus.

- a. (4%) If $S = 3S_0$, Find the value of P.
- b. (4%) Explain what does the value S_0 represent?
- c. (4%) What will be the consequence of $S < S_0$?
- d. (4%) If $P(27S_0) = 5$, Find the value of A.
- e. (6%) For a certain stimulus A=2 and P=-1, this means that S is ______ times bigger/smaller than S_0 (Fill the blank and circle the right

Answer, show work)

f. (6%) How much bigger is $P(27S_0)$ of $P(3S_0)$?

3.	(25%) It is known that a certain Athlete during his training runs a certain distance in 3
	seconds in week 1 of the training. After 2 more weeks of training the athlete runs the
	same distance in 2 seconds. It is known that the athlete performance follows a
	logarithmic model.

a. (5%) Create a graph, indicate all the variables on the graph and relevant points.

b. (15%) Create a logarithmic model <u>in base 2</u> to describe the performance of the athlete.

c. (5%) Comment on the limitations of the model.