Name:

QUIZ 19 - MATH IB HL

1. (47%) Given the function $f(x)=-\log _{2}\left(4-\frac{x}{3}\right)-1$
a. (8%) Find the domain of the function: \qquad
b. (8\%) Write all the corresponding limit(s) (if any) and conclusion:

Since \qquad
c. (5\%) Find the y intercept: \qquad
d. (8\%) Find the x intercept: \qquad
e. (5\%) Sketch the function (including asymptotes and intercepts)
f. (2\%) State the range of the function: \qquad
g. (3\%) State the interval in which the function increases: \qquad
h. (4%) Sketch the function: $g(x)=\left(\log _{2}\left(4-\frac{x}{3}\right)-1\right)\left(\frac{x+12}{x+12}\right)$
i. $\quad(4 \%) \operatorname{Lim}_{x \rightarrow-12^{-}}(g(x))=$
2. (28\%) The Weber - Fechner Law in psychophysics for the response of the human eye to stimulus follows the flowing model:

$$
P(S)=A \log _{9}\left(\frac{S}{S_{0}}\right)
$$

https://en.wikipedia.org/wiki/Weber\�\�\�Fechner law Where \mathbf{S} is the stimulus Intensity, $\mathbf{A}, \mathbf{S}_{\mathbf{0}}$ are constants and \mathbf{P} is the human perception of the stimulus.
a. (4%) If $\mathbf{S}=\mathbf{3 S}_{\mathbf{0}}$, Find the value of P .
b. (4\%) Explain what does the value S_{0} represent?
c. (4\%) What will be the consequence of $\mathbf{S}<\mathbf{S}_{\mathbf{0}}$?
d. (4%) If $\mathbf{P}\left(\mathbf{2 7 S}_{\mathbf{0}}\right)=\mathbf{5}$, Find the value of A .
e. (6\%) For a certain stimulus $\mathrm{A}=2$ and $\mathrm{P}=-1$, this means that S is \qquad times bigger/smaller than S_{0} (Fill the blank and circle the right Answer, show work)
f. (6\%) How much bigger is $\mathrm{P}\left(27 \mathrm{~S}_{0}\right)$ of $\mathrm{P}\left(3 \mathrm{~S}_{0}\right)$?
3. (25%) It is known that a certain Athlete during his training runs a certain distance in 3 seconds in week 1 of the training. After 2 more weeks of training the athlete runs the same distance in 2 seconds. It is known that the athlete performance follows a logarithmic model.
a. (5\%) Create a graph, indicate all the variables on the graph and relevant points.
b. (15%) Create a logarithmic model in base $\mathbf{2}$ to describe the performance of the athlete.
c. (5%) Comment on the limitations of the model.

