Name:

QUIZ 4 - MATH IB HL

Evaluate/Simplify

1. $(6 \%) \log _{2}\left(\sqrt{\frac{1}{8}}\right)=$
2. $(7 \%) \log _{\sqrt{27}}\left(\frac{3}{\sqrt[4]{\sqrt{27}}}\right)=$
3. $(6 \%) 2^{-\frac{\log _{2}(8)}{3}-1}=$
4. (7%)
$\log _{3}(4)-\log _{3}(2)-\log _{3}(6)=$
5. $(6 \%) \operatorname{Ln}\left(e^{-1}\right)-\operatorname{Ln}\left(\frac{e}{\sqrt[4]{e}}\right)=$
6. $(7 \%) \log _{3}\left(\log _{5}(\sqrt[18]{25})\right)$
7. (15\%) Solve: $\log \left(\frac{1}{\sqrt{2 x}}\right)-\log (\sqrt{2 x})=-1$
8. $\quad(20 \%)$ Let $\log _{10}(P)=x, \quad \log _{10}(Q)=y, \quad \log _{10}(R)=z . \quad$ Express in terms of x, y and z.

$$
\log _{10}\left(\frac{Q}{100 \cdot \sqrt[3]{P}}\right)=
$$

$$
\log _{10}\left(\frac{10}{P^{2} Q R}\right)=
$$

10. (20%) Given the equation: $\quad \log _{4}\left(\frac{x}{3}\right)-\log _{2}(x-4)=-2$
a. (5\%) Change the base of the first logarithm to 2.
b. (5\%) Simplify the denominator of the first logarithm after the change of base.
c. (10%) Continue to solve the equation (a quadratic equation should be obtained and solved).
