\qquad

QUIZ - STATIONARY POINTS AND FUNCTION ANALYSIS

1. (10%) In a stationary point the value of the derivative is \qquad
2. (10%) If the value of the derivative is 0 at a point then the point must be a minimum or a maximum. True / False. Explain!
3. (5%) If $f^{\prime}(a)<0$, that means that the function is \qquad at a.
4. (5%) If $f^{\prime}(a)=0$, that means that the function has \qquad at a.
5. (24\%) Given the following function:

Fill the table with: Positive, negative, zero, doesn't exist:

	$\mathrm{x}=\mathrm{a}$	$\mathrm{x}=\mathrm{b}$	$\mathrm{x}=\mathrm{c}$	$\mathrm{x}=\mathrm{g}$	$\mathrm{x}=\mathrm{d}$	$\mathrm{x}=\mathrm{e}$
$\mathrm{f}(\mathrm{x})$						
$\mathrm{f}^{\prime}(\mathrm{x})$						

6. (46%) Given the function: $f(x)=\frac{3}{x-1}-x^{2}$
a. (5%) Sketch the graph for $-5 \leq x \leq 5$ and $-15 \leq y \leq 15$

b. (5\%) Find: $f(2)=$
c. (10%) Write down the coordinates of the local maximum on the graph of f
d. (5%) Find the gradient of the tangent to the graph at $x=2$.
e. (15%) There is at least one more point on the graph in which the tangent has the same gradient as in $x=2$. Find such a point.
f. (6%) Where is the function increasing?
